A Compressed Sensing Approach for Partial Differential Equations with Random Input Data
نویسندگان
چکیده
منابع مشابه
A compressed sensing approach for partial differential equations with random input data
In this paper, a novel approach for quantifying the parametric uncertainty associated with a stochastic problem output is presented. As with Monte-Carlo and stochastic collocation methods, only point-wise evaluations of the stochastic output response surface are required allowing the use of legacy deterministic codes and precluding the need for any dedicated stochastic code to solve the uncerta...
متن کاملA Block-Wise random sampling approach: Compressed sensing problem
The focus of this paper is to consider the compressed sensing problem. It is stated that the compressed sensing theory, under certain conditions, helps relax the Nyquist sampling theory and takes smaller samples. One of the important tasks in this theory is to carefully design measurement matrix (sampling operator). Most existing methods in the literature attempt to optimize a randomly initiali...
متن کاملA Weighted Reduced Basis Method for Elliptic Partial Differential Equations with Random Input Data
In this work we propose and analyze a weighted reduced basis method to solve elliptic partial differential equation (PDE) with random input data. The PDE is first transformed into a weighted parametric elliptic problem depending on a finite number of parameters. Distinctive importance at different values of the parameters are taken into account by assigning different weight to the samples in th...
متن کاملA Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data
In this paper we propose and analyze a Stochastic-Collocation method to solve elliptic Partial Differential Equations with random coefficients and forcing terms (input data of the model). The input data are assumed to depend on a finite number of random variables. The method consists in a Galerkin approximation in space and a collocation in the zeros of suitable tensor product orthogonal polyno...
متن کاملA Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data
This work proposes and analyzes a Smolyak-type sparse grid stochastic collocation method for the approximation of statistical quantities related to the solution of partial differential equations with random coefficients and forcing terms (input data of the model). To compute solution statistics, the sparse grid stochastic collocation method uses approximate solutions, produced here by finite el...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Computational Physics
سال: 2012
ISSN: 1815-2406,1991-7120
DOI: 10.4208/cicp.151110.090911a